## Exercise 6

Write the composite function in the form $f(g(x))$. [Identify the inner function $u=g(x)$ and the outer function $y=f(u)$.] Then find the derivative $d y / d x$.

$$
y=\sqrt{2-e^{x}}
$$

## Solution

Here $f(x)=\sqrt{x}$ and $g(x)=2-e^{x}$ so that $f(g(x))=\sqrt{2-e^{x}}$. Take the derivative now.

$$
\begin{aligned}
y^{\prime}=\frac{d}{d x}\left(\sqrt{2-e^{x}}\right) & =\frac{1}{2}\left(2-e^{x}\right)^{-1 / 2} \cdot \frac{d}{d x}\left(2-e^{x}\right) \\
& =\frac{1}{2}\left(2-e^{x}\right)^{-1 / 2} \cdot\left(-e^{x}\right) \\
& =-\frac{e^{x}}{2 \sqrt{2-e^{x}}}
\end{aligned}
$$

